skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zhilu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks (DNNs) have achieved tremendous success in a variety of applications across many disciplines. Yet, their superior performance comes with the expensive cost of requiring correctly annotated large-scale datasets. Moreover, due to DNNs’ rich capacity, errors in training labels can hamper performance. To combat this problem, mean absolute error (MAE) has recently been proposed as a noise-robust alternative to the commonly-used categorical cross entropy (CCE) loss. However, as we show in this paper, MAE can perform poorly with DNNs and challenging datasets. Here, we present a theoretically grounded set of noise-robust loss functions that can be seen as a generalization of MAE and CCE. Proposed loss functions can be readily applied with any existing DNN architecture and algorithm, while yielding good performance in a wide range of noisy label scenarios. We report results from experiments conducted with CIFAR-10, CIFAR-100 and FASHIONMNIST datasets and synthetically generated noisy labels. 
    more » « less